
GanDiao Malware Analysis

Luca D’Amico

https://www.lucadamico.dev

01-Apr-2025

https://www.lucadamico.dev/

Abstract ... 3

Environment, methodologies and tools used ... 4

Binary information ... 5

Driver analysis .. 6

Using GanDiao! ... 11

Conclusion ... 12

Abstract

This is a technical analysis of GanDiao.sys, a Windows XP-era rootkit-style

kernel driver, likely developed by a Chinese hacking group during the mid-to-

late 2000s. It was used in multiple malware campaigns.

Though mostly forgotten, this small yet interesting kernel-mode driver was

designed to allow user-mode processes to terminate other processes, even

those protected by the system.

In fact, the Chinese term “GanDiao” means “Get rid of” or “Kill it”.

We will reverse engineer this driver, understanding its inner workings and

then, using a sacrificial XP VM, we will write a userland application capable of

using it to kill other processes.

This documentation serves as both an educational breakdown and a tribute to

the fine art of malware archaeology.

Environment, methodologies and tools used
To carry out this analysis, a Windows XP SP3 virtual machine was used.

Since this driver is unsigned (obviously), it will work only in Windows XP.

Starting from Windows Vista, only drivers with a valid signature will be

accepted.

No antivirus of any kind has been installed in the virtual machine.

The following tools were used during the analysis:

• IDA Free for disassembly

• Visual C++ 6.0 for building the userland tool

• Windows XP SP3 VM (4GB RAM)

• Sysinternals DbgView (for DbgPrint() logs)

• ProcessHacker to retrieve target PIDs

Binary information

Binary name GanDiao.sys

File size 2 KB

SHA-256 c9a3fc3f4619ba2f74fd71b9586a20de4f5e45626a
e07e8b9d8fe0f60b8fdc57

Language detected C (VS2002)
Type Kernel-mode malware tool

Purpose Kill any user-mode processes via a
kernel-mode call, bypassing standard
access protections

TimeDateStamp 49b3e7ef (2009-03-08 16:44:47)
VirusTotal URL https://www.virustotal.com/gui/file/c9a3fc3f4619b

a2f74fd71b9586a20de4f5e45626ae07e8b9d8fe0f60
b8fdc57

Virus Total popular threat name trojan.tedy/rootkit

Important note: GanDiao.sys was used by various malware families. This exact

version was extracted from KillAV trojan (trojan.crifi/killav, sha256:

50768026ef819d3f725e732f8389ae3591c3a4cf68bba576ed03026531a6e9aa).

In this trojan, GanDiao.sys is driven using kk.dll (sha256:

97881cd4381b5b23b53a278a15a120bd498dd5ef51d5674a6d42b1229a7f9dd1

). We will also disassemble this dll to get the DeviceIoControl function that we

will use as a reference for building our userland tool.

Driver analysis

Let’s open GanDiao.sys in IDA Free.

In this driver there are only a few functions:

The last three functions are already identified:

• DriverEntry: the entry point of the driver (it is basically the main

function of Windows drivers). It initializes a virtual device and creates a

symbolic link.

• MmUnmapViewOfSection: this function removes a memory-mapped

view of a section (such as a file or shared memory) that was previously

mapped into a process’s virtual address space. This is its signature:

• DbgPrint: this function is used to print debug strings (it like printf, but in

kernel mode)

Here is a screenshot of the DriverEntry disassembly:

Nothing really fancies here, just a regular driver initialization using

IoCreateDevice (word_1043E = “Device\GanDiao”) and IoCreateSymbolicLink

(word_1045E = “DosDevices\GanDiao”) functions.

All the standard dispatch routines (IRP_MJ_CREATE, IRP_MJ_CLOSE,

IRP_MJ_READ, IRP_MJ_WRITE) are registered to sub_103A4 which is a dummy

function that simply calls IofCompleteRequest and returns. But

IRP_MJ_DEVICE_CONTROL is registered to sub_103DB: this is the IRP handler

that the driver uses to receive commands from the userland application!

Here is a disassembly of this function:

This is where things are getting interesting, and for some reasons the original

author left some DbgPrint. We can easily assume that if the check against EBX

(i.e., if EBX is equal to 0x88888888) is successful, the function sub_10308 will

be called passing an argument.

Let’s disassemble this function:

BINGO! This is where the actual magic happens: the value passed to this

function is the PID of the target process. This PID is used in

PsLookupProcessByProcessId and if successful, then a call to

MmUnmapViewOfSection is performed like so:

MmUnmapViewOfSection(PID, 0x7C920000)

0x7C920000 is the base address of ntdll.dll! So, the driver is trying to unmap

ntdll.dll from the target process, causing it to become unstable and crash upon

the next syscall!

This is exactly how this driver manages to make target applications crash!

Processes like notepad.exe, explorer.exe, and even AV services were

successfully taken down.

The last missing bit to figure out is how to communicate with GanDiao using

the magic IOCTL value 0x88888888 we discovered.

To easily figure this out, we can quickly disassemble kk.dll (that is part of the

malware that contained GanDiao) and look for a call to DeviceIoControl.

Here it is:

So, the correct way to interact with the driver is:

We now know everything we need to use GanDiao!

Using GanDiao!

We will now install GanDiao.sys in a Windows XP VM and write a small

application to interact with it and use it to kill some processes.

Let’s copy GanDiao.sys to the desktop (in our VM), then open a cmd.exe and

run:

We can verify that the driver is active using Process Hacker:

I used VC++ 6.0 to compile our small application that will communicate with

the driver:

We are ready! launch the app, insert a PID and BOOM: the target program will

crash almost instantly!

Conclusion

GanDiao.sys is a beautifully minimal kernel-mode attack tool designed for one

simple goal: kill protected processes from userland. Although old, it teaches us

something about Windows XP internals, kernel-user communication, and how

even small drivers can pack powerful capabilities.

This adventure was about more than crashing processes. It was a dive into

legacy malware engineering, and a reminder that old code still has stories to

tell.

Shoutout to all reverse engineers keeping the flame alive :)

For more technical papers, please visit my website:

https://www.lucadamico.dev

https://www.lucadamico.dev/

	Abstract
	Environment, methodologies and tools used
	Binary information
	Driver analysis
	Using GanDiao!
	Conclusion

